
code.tutsplus.com

30 HTML Best Practices for Beginners
Jeffrey Way
16-21 minutos

Read Time:14 minsLanguages:

This tutorial is specifically for those who are just diving into web development. If you have one
year of experience or less, hopefully some of the tips listed here will help you to become better,
quicker!

1. Always Close Your Tags
Back in the day, it wasn't uncommon to see things like this:

Some text here.
Some new text here.
You get the idea.

Notice how the wrapping UL/OL tag was omitted. Additionally, many chose to leave off the closing
LI tags as well. By today's standards, this is simply bad practice and should be 100% avoided.
Always, always close your tags. Otherwise, you'll encounter validation and glitch issues at every
turn.

Better

 Some text here.
 Some new text here.
 You get the idea.

2 Million+ WordPress Themes & Plugins, Web & Email
Templates, UI Kits and More
Download thousands of WordPress themes and plugins, web templates, UI elements, and much
more with an Envato Elements membership. Get unlimited access to a growing library to millions
of creative and code assets.

UX & UI Kits
Easily customizable UX and UI kits to inspire your next project.

https://code.tutsplus.com/tutorials/30-html-best-practices-for-beginners--net-4957
https://elements.envato.com/graphic-templates/ux-and-ui-kits?ec_promo=ca_ux-ui-kits&ec_topic=code

App Design Templates
The perfect starting point for your next mobile app design.

Android App Templates
Kick-start your next Android app with 5k+ versatile templates.

2. Declare the DOCTYPE

Declaring a DOCTYPE was a cumbersome process in the past. However, HTML5 has made things
a lot simpler. Now, you can just add the following line at the top of your webpage to let browsers
know that it should be interpreted as HTML5.

<!DOCTYPE html>

Some old websites that have not been updated in quite some time might still be using older
standards to declare DOCTYPE. Don't be confused by all that. Using the above line is the correct
way to do it in HTML5. Just remember that it has to go before everything, even the <html> tag.

https://codecanyon.net/category/mobile/android?ec_promo=ca_app-templates-android&ec_topic=code
https://elements.envato.com/graphic-templates/app?ec_promo=ca_app-design-templates&ec_topic=code

3. Never Use Inline Styles
When you're hard at work on your markup, sometimes it can be tempting to take the easy route and
sneak in a bit of styling.

<p style="color: red;">I'm going to make this text red so that it really stands
out and makes people take notice! </p>

Sure, it looks harmless enough. However, this points to an error in your coding practices.

When creating your markup, don't even think about the styling yet. You only begin adding
styles once the page has been completely coded.

It's like crossing the streams in Ghostbusters. It's just not a good idea. -Chris Coyier (in
reference to something completely unrelated.)

Instead, finish your markup, and then reference that P tag from your external stylesheet.

Better
#someElement > p {
 color: red;
}

4. Place All External CSS Files Within the Head Tag
Technically, you can place stylesheets anywhere you like. However, the HTML specification
recommends that they be placed within the document HEAD tag. The primary benefit is that your
pages will seemingly load faster.

While researching performance at Yahoo!, we discovered that moving stylesheets to the
document HEAD makes pages appear to be loading faster. This is because putting
stylesheets in the HEAD allows the page to render progressively. - ySlow Team

<head>
<title>My Favorites Kinds of Corn</title>
<link rel="stylesheet" type="text/css" media="screen" href="path/to/file.css" />
<link rel="stylesheet" type="text/css" media="screen"
href="path/to/anotherFile.css" />
</head>

5. Consider Placing JavaScript Files at the Bottom

Remember—the primary goal is to make the page load as quickly as possible for the user. When
loading a script, the browser can't continue until the entire file has been loaded. Thus, the user will
have to wait longer before noticing any progress.

If you have JS files whose only purpose is to add functionality—for example, after a button is
clicked—go ahead and place those files at the bottom, just before the closing body tag. This is
absolutely a best practice.

Better
<p>And now you know my favorite kinds of corn. </p>
<script type="text/javascript" src="path/to/file.js"></script>
<script type="text/javascript" src="path/to/anotherFile.js"></script>
</body>
</html>

6. Never Use Inline JavaScript. It's Not 1996!
Another common practice years ago was to place JS commands directly within tags. This was very
common with simple image galleries. Essentially, an onclick attribute was appended to the tag.
The value would then be equal to some JS procedure. Needless to say, you should never, ever do
this. Instead, transfer this code to an external JS file and use addEventListener or
attachEvent to "listen" for your desired event. Or, if using a framework like jQuery, just use the
click() method.

$('a#moreCornInfoLink').click(function() {
 alert('Want to learn more about corn?');
});

7. Validate Continuously

I once blogged about how the idea of validation has been completely misconstrued by those who
don't completely understand its purpose. As I mentioned in the article, "validation should work
for you, not against."

https://jeff-way.com/2009/05/13/heres-the-thing-about-validation/
https://www.jquery.com/

However, especially when first getting started, I highly recommend that you download the Web
Developer Toolbar and use the "Validate HTML" and "Validate CSS" options continuously. While
CSS is a somewhat easy language to learn, it can also make you tear your hair out. As you'll find,
many times, it's your shabby markup that's causing that strange whitespace issue on the page.
Validate, validate, validate.

https://addons.mozilla.org/en-US/firefox/addon/60
https://addons.mozilla.org/en-US/firefox/addon/60

8. Use Browser Developer Tools

I can't recommend this one enough. Using developer tools that come with all major browsers will
help you resolve all kinds of layout problems and save a lot of time. Take a couple of hours and
scour the web for every worthy tutorial you can find on the subject. The knowledge you gain will be
well worth the time you invest.

9. Keep Your Tag Names Lowercase
Technically, you can get away with capitalizing your tag names.

<DIV>
<P>Here's an interesting fact about corn. </P>
</DIV>

Having said that, please don't. It serves no purpose and hurts my eyes—not to mention the fact that
it reminds me of Microsoft Word's HTML function!

Better
<div>
<p>Here's an interesting fact about corn. </p>
</div>

10. Use H1 through H6 Tags
Admittedly, this is something I tend to slack on. It's best practice to use all six of these tags. If I'm
honest, I usually only implement the top four; but I'm working on it! For semantic and SEO reasons,
force yourself to replace that P tag with an H6 when appropriate.

<h1>This is a really important corn fact! </h1>
<h6>Small, but still significant corn fact goes here. </h6>

11. If Building a Blog, Save the H1 for the Article Title

Just this morning, on Twitter, I asked our followers whether they felt it was smartest to place the H1
tag as the logo or to instead use it as the article's title. Around 80% of the returned tweets were in
favor of the latter method.

As with anything, determine what's best for your own website. However, if building a blog, I'd
recommend that you save your H1 tags for your article title. For SEO purposes, this is a better
practice—in my opinion.

https://www.twitter.com/nettuts

12. Download ySlow

Especially in the last few years, the Yahoo team has been doing some really great work in our field.
They released an extension for all major browsers like Chrome, Firefox, Safari and Opera etc.
called ySlow. When activated, it will analyze the given website and return a "report card" of sorts
which details the areas where your site needs improvement. It can be a bit harsh, but it's all for the
greater good. I highly recommend it.

13. Start Using New HTML5 Tags
In the old days, different sections of a page were all wrapped inside div tags. This is because there
was no way to provide a more semantic structure to our page. This is no longer true. HTML5 comes
with a lot of new tags that we can use to provide structure to the content on our webpage. This
includes tags like nav, section, article, aside, etc.

Read about them and start using them in your new projects.

https://developer.yahoo.com/yslow/
https://developer.yahoo.com/yslow/
https://developer.yahoo.com/yslow/
https://developer.yahoo.com/yslow/

14. Wrap Navigation With an Unordered List

Every website has a navigation section of some sort. While you can definitely get away with
formatting it like so:

 <div id="nav">
 Home
 About
 Contact
 </div>

I'd encourage you not to use this method, for semantic reasons. Your job is to write the best possible
code that you're capable of.

Why would we style a list of navigation links with anything other than an unordered
LIST?

The ul tag is meant to contain a list of items. We also get rid of the wrapper div and replace it
with the nav tag.

Better
<nav>

 Home
 About
 Contact

</nav>

15. Check Browser Support for Modern Features

New features are added to the HTML and CSS spec all the time. Some of these features might not
be available in all browsers. Therefore, it makes sense to figure out what browsers are used by your
target audience and then plan accordingly.

You might be able to provide polyfills for browsers which don't support a feature or warn users they
are using an incompatible browser if that feature is necessary for the functioning of the website. In
any case, knowing which features are commonly available across browsers can be helpful. The Can
I Use website is a great resource for that kind of thing.

16. Choose a Great Code Editor
There are a lot of great code editors available for you to use now, from something basic and
lightweight like Notepad++ to full-fledged IDEs. My personal favorite among them all is Visual
Studio Code. It is free, built upon open source, and comes with lots of extensions to help you write
better code fast.

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://caniuse.com/
https://caniuse.com/

There are a lot of other code editors available as well, like Atom, Brackets, and Vim. Just pick one
that you like best and start coding.

17. Once the Website Is Complete, Compress!

By zipping your CSS and JavaScript files, you can reduce the size of each file by a substantial 25%
or so. Please don't bother doing this while still in development. However, once the site is more or
less complete, use a few online compression programs to save yourself some bandwidth.

JavaScript Compression Services
• Javascript Compressor
• JS Compressor

CSS Compression Services
• CSS Optimiser
• CSS Compressor
• Clean CSS

http://www.cleancss.com/
http://www.cssdrive.com/index.php/main/csscompressor/
http://www.cssoptimiser.com/
http://www.xmlforasp.net/JSCompressor.aspx
http://javascriptcompressor.com/

18. Cut, Cut, Cut

Looking back on my first website, I must have had a severe case of divitis. Your natural instinct is
to safely wrap each paragraph with a div, and then wrap it with one more div for good
measure. As you'll quickly learn, this is highly inefficient.

Once you've completed your markup, go over it two more times and find ways to reduce
the number of elements on the page. Does that UL really need its own wrapping div? I
think not.

Just as the key to writing is to "cut, cut, cut," the same holds true for your markup.

19. All Images Require "Alt" Attributes
It's easy to ignore the necessity for alt attributes within image tags. Nevertheless, it's very important,
for accessibility and validation reasons, that you take an extra moment to fill these sections in.

Bad

Better

20. Stay Up Late
I highly doubt that I'm the only one who, at one point while learning, looked up and realized that I
was in a pitch-dark room well into the early, early morning. If you've found yourself in a similar
situation, rest assured that you've chosen the right field.

The amazing "AHA" moments, at least for me, always occur late at night. This was the case when I
first began to understand exactly what JavaScript closures were. It's a great feeling that you need to
experience, if you haven't already.

21. View Source

What better way to learn HTML than to copy your heroes? Initially, we're all copiers! Then slowly,
you begin to develop your own styles/methods. So visit the websites of those you respect. How did
they code this and that section? Learn and copy from them. We all did it, and you should too. (Don't
steal the design; just learn from the coding style.)

Notice any cool JavaScript effects that you'd like to learn? It's likely that they're using a plugin to
accomplish the effect. View the source and search the HEAD tag for the name of the script. Then
Google it and implement it into your own site! Yay.

22. Style ALL Elements
This best practice is especially true when designing for clients. Just because you haven't used a
blockquote doesn't mean that the client won't. Never use ordered lists? That doesn't mean they
won't! Do yourself a service and create a special page specifically to show off the styling of every
element: UL, OL, P, H1–H6, blockquotes, etc.

23. Use Twitter

Initially, the idea behind Twitter was to post "what you were doing." Though this still holds true to a
small extent, it's become much more of a networking tool in our industry. If a web dev writer that I
admire posts a link to an article they found interesting, you better believe that I'm going to check it

out as well—and you should too!

24. Learn Photoshop

Photoshop is open pretty much 24/7 on my computer.

In fact, Photoshop may very well become the most important tool you have. Once you've learned
HTML and CSS, I would personally recommend that you then learn as many Photoshop techniques
as possible.

25. Learn Each HTML Tag
There are literally dozens of HTML tags that you won't come across every day. Nevertheless, that
doesn't mean you shouldn't learn them! Are you familiar with the "abbr" tag? What about "cite"?
These two alone deserve a spot in your tool-chest. Learn all of them!

By the way, in case you're unfamiliar with the two listed above:

• abbr does pretty much what you'd expect. It refers to an abbreviation. "Blvd" could be
wrapped in a <abbr> tag because it's an abbreviation for "boulevard".

• cite is used to reference the title of some work. For example, if you reference this article on
your own blog, you could put "30 HTML Best Practices for Beginners" within a <cite> tag.
Note that it shouldn't be used to reference the author of a quote. This is a common
misconception.

26. Participate in the Community
Just as sites like ours contribute greatly to furthering a web developer's knowledge, you should too!
Finally figured out how to float your elements correctly? Make a blog post to teach others how.
There will always be those with less experience than you. Not only will you be contributing to the
community, but you'll also teach yourself. Ever notice how you don't truly understand something
until you're forced to teach it?

27. Use a CSS Reset
This is another area that's been debated to death. CSS resets: to use or not to use; that is the
question. If I were to offer my own personal advice, I'd 100% recommend that you create your own

reset file. Begin by downloading a popular one, like Eric Meyer's, and then slowly, as you learn
more, begin to modify it into your own.

If you don't do this, you won't truly understand why your list items are receiving that extra bit of
padding when you didn't specify it anywhere in your CSS file. Save yourself the anger and reset
everything! This one should get you started.

html, body, div, span,
h1, h2, h3, h4, h5, h6, p, blockquote, pre,
a, abbr, acronym, address, big, cite, code,
img, ins, kbd, q, s, samp,
small, strike, strong,
dl, dt, dd, ol, ul, li,
fieldset, form, label, legend,
table, caption, tbody, tfoot, thead, tr, th, td {
 margin: 0;
 padding: 0;
 border: 0;
 outline: 0;
 font-size: 100%;
 vertical-align: baseline;
 background: transparent;
}
body {
 line-height: 1;
}
ol, ul {
 list-style: none;
}
blockquote, q {
 quotes: none;
}
blockquote:before, blockquote:after,
q:before, q:after {
 content: '';
 content: none;
}

table {
 border-collapse: collapse;
 border-spacing: 0;
}

http://meyerweb.com/eric/tools/css/reset/index.html

28. Line 'em Up!

http://www.thenetsetter.com/

Generally speaking, you should strive to line up your elements as best as possible. Take a look at
your favorite designs. Did you notice how each heading, icon, paragraph, and logo lines up with
something else on the page? Not doing this is one of the biggest signs of a beginner. Think of it this
way: If I ask why you placed an element in that spot, you should be able to give me an exact reason.

http://www.thenetsetter.com/
http://www.thenetsetter.com/

29. Slice a PSD

Okay, so you've gained a solid grasp of HTML, CSS, and Photoshop. The next step is to convert
your first PSD into a working website. Don't worry; it's not as tough as you might think. I can't
think of a better way to put your skills to the test. If you need assistance, review these in-depth
video tutorials that show you exactly how to get the job done.

• Slice and Dice that PSD
• From PSD to HTML/CSS

https://code.tutsplus.com/articles/converting-a-design-from-psd-to-html--net-2114
https://code.tutsplus.com/articles/slice-and-dice-that-psd--net-2476

30. Don't Use a Framework... Yet
Frameworks, whether they be for Javascript or CSS, are fantastic; but please don't use them when
first getting started. Though it could be argued that jQuery and Javascript can be learned
simultaneously, the same can't be said for CSS. I've personally promoted the 960 CSS Framework,
and use it often. Having said that, if you're still in the process of learning CSS—meaning the first
year—you'll only make yourself more confused if you use one.

CSS frameworks are for experienced developers who want to save themselves a bit of time. They're
not for beginners.

This post has been updated with contributions from Monty Shokeen. Monty is a full-stack developer
who also loves to write tutorials, and to learn about new JavaScript libraries.

I used to be the editor of Nettuts+ and head of web development courses at Tuts+.

https://tutsplus.com/
http://net.tutsplus.com/
https://tutsplus.com/authors/monty-shokeen
https://code.tutsplus.com/articles/a-detailed-look-at-the-960-css-framework--net-2567

HTML Best Practices – How to Build a Better
HTML-Based Website
HTML is the backbone of any website. It's the first thing people see. Without it, there would be no
website.

Because of this, it's important that you stick to good coding practices. If you don't follow the best
practices, you will create a bad user experience for the web user.

There's always something new to learn in HTML, whether you're a coding newbie or an
experienced pro.

In this article, we will talk about the basic best practices of HTML.

Let's get started. 💃

HTML Best Practices
HTML best practices are rules that help you create websites that are easy to maintain and read.

Here are some guidelines to keep in mind when building an HTML-based website:

Use only one <h1> element for one code sheet
There are six different heading tags in HTML, <h1> to <h6>. The <h1> tag is the main heading
(subject of the web page) while the <h6> tag is the least important heading.

The <h1> tag is bigger than the <h2> tag, the <h2> tag is bigger than the <h3>tag, all the way
down to the <h6> tag. Each of the headings decreases in size according to its importance.

It is important to avoid using more than one <h1> element for one code sheet.

Don't do this :⬇️

<main>
<div>
<h1>Can Coding be fun?</h1>
<p>The more you code the better you become</p>
</div>

<div>
<h1>Coding is fun</h1>
<p>It is always better when you have fun coding</p>
</div>
</main>

In the above example, we used the <h1> tag on the first and second <div>. Coding this way will
work, but although you will achieve the same goal, this is not the best practice.

Do this instead :⬇️

<main>

<div>
<h1>Can coding be fun?</h1>

<p>The more you code the better you become</p>
</div>

<div>
<h2>Coding is fun</h2>
<p>It is always better when you have fun coding</p>
</div>

</main>

Having only one <h1> element on a web page is vital for Search Engine Optimization (SEO). It
helps search engines understand what a web page is all about (the main idea of a web page).

Do not skip heading levels in HTML
When using the header tags, it's vital to proceed from <h1> to <h2> to <h3> to <h4> and so on...

Don't use <h1> and then jump to <h3> when using header tags. It's difficult for web visitors using
a screen reader to understand the contents of your web page when you skip heading levels.

A screen reader is a technology that helps people who have difficulty seeing access and interact
with digital content, like websites or applications via audio or touch. The main users of screen
readers are people who are blind or have very limited vision.

You can read a little introduction to screen readers here.

Don't do this :⬇️

<h1>Coding is fun</h1>
<h3>It is always better when you have fun coding</h3>
</h5>

Do this instead :⬇️

<h1>Can coding be fun?</h1>
<h2>The more you code the better you become</h2>
<h3>Coding is fun</h3>

Use the figure element to add captions to your images in HTML
It's advisable to use the <figure> element when adding captions to your images. It is important to
use the <figcaption> element along with the <figure> element for it to work.

Don't do this :⬇️

<div>

<p>This is a picture of a man working on his computer</p>
</div>

The above example will work as expected but is not the best way to go about it. In a situation where
the image fails to load you will have the alt text and the text on the <p> element showing on the
screen. It will be difficult for a web visitor using a screen reader to tell the difference between the
<p> and alt text.

Always keep in mind that just because your code works doesn't mean you're following best
practices.

https://abilitynet.org.uk/factsheets/introduction-screen-readers

Do this instead :⬇️

<figure>

<figcaption> This is a picture of a man working on his computer</figcaption>
</figure>

The above example is the best way to add captions to your images.

It is important to add captions to your images this way for:

• Search engine optimization: It is easier to find your images on search engines.
• It will be easier for web visitors who use screen readers to understand the content of your

web page.

Do not use divs to create headers and footers – use semantic elements instead
HTML semantic elements mark up the structure of a document in a more meaningful way on a
webpage. It is best practice to use HTML semantic elements for the proper assembly of your web
page.

Avoid using <divs> in place of HTML semantics. Do not use <div> elements to show headers
and footers on your web page. Use semantic <header> and <footer> elements instead.

The <header> element shows the navigation or the opening part of the web page.

The <footer> element shows copyright information or navigation links about the web page.

Don't do this :⬇️

<div class="header">
Home
About
Contact
</div>

<div class="footer">
Home
About
Contact
</div>

In the above example, we used the <div> tag as a container for the <header> and <footer>.
Coding this way will work, but although you will achieve the same goal, this is not the best
practice.

Do this instead :⬇️

<header>
<h1></h1>
</header>

<footer>
Home
About
Contact
</footer>

The above example is the best way to add <footers> and <headers> to your web page.

It is important to add <footer> and <header> using HTML semantic elements because:

• Using semantic elements for your header and footer makes your code easier to read.

• It provides a better user experience for web visitors. It will be easier for web visitors who
use screen readers to understand the content of your web page.

Checkout this article to know more about HTML semantic elements.

Avoid using and <i> to bold and italicize texts on a web page
The and <i> tags are also known as the bold and italics tag. They are both used to highlight
words in a text on a web page.

You shouldn't use and <i> for bolding and italics because they have no semantic meaning.
Use the font-weight CSS property or use the and the tags instead.

You use the tag to make a text on a webpage important. It highlights or bolds a text on
a webpage. The tag emphasizes the text in a webpage. It also displays the text in italics like
the <i> tag.

Don't do this :⬇️

<p><i>Code at your own pace</i><p>

<p>code at your own pace<p>

The displayed texts will be bold and italicized in the example above. It will be of no importance to
the web user using a screen reader. It has no semantic meaning.

The HTML5 specification says that the and <i> tags should only be used as a last resort if no
other tag is available.

Do this instead :⬇️

 <p>Code at your own pace<p>

<p>code at your own pace<p>

Don't place block-level element within inline elements
Block-level elements start in a new line on a web page. By default, they stretch from the beginning
of the line to the end on a web page. You won't be able to add more content inline to a block
element without using CSS.

The <p>, <h1>-<h6>, and the <div> elements are some of the examples of a block level
element.

The inline element covers the smallest area on a web page. They do not start on a new line on a web
page.

The , , and the <a> elements are some of the examples of inline elements.

You cannot place block elements inside inline elements.

Don't do this :⬇️

https://www.freecodecamp.org/news/semantic-html5-elements/#:~:text=Semantic%20HTML%20elements%20are%20those,content%20that%20is%20inside%20them

 <p> Visit freecodecamp </p>

You cannot wrap <p> inside a <a> element because <p> is a block-level element and <a> is an
inline element.

Do this instead :⬇️

<p>
Visit FreecodeCamp
to learn Javascript
</p>

The above example is the best way to nest inline elements inside a block-level element.

It is important to note that:

• The block-level element cannot be nested inside an inline element.
• The inline element can be nested inside a block-level element.
• The inline and the block-level element can be nested inside the block-level element.

Just a quick note: nested, in the above example, means to place inside. So when I say it can't be
nested, I'm referring to the fact that it can't be placed inside.

I hope you understand these three simple rules used for nesting elements.

It is also possible to convert block-level elements to inline elements and vice versa using CSS. Use
display: inline-block and display: inline to convert from block-level to inline
element.

It's important to remember that just because your code works doesn't mean you're following best
practices.

This is why I always recommend using the W3C markup validation service to double-check your
codes.

This validator checks the markup validity of web documents in HTML, XHTML, SMIL, MathML,
etc: W3c markup validation service.

You can double-check your code by copying its URL and pasting it on the site or uploading your
HTML file.

Conclusion
I hope this article helped you learn a thing or two about HTML best practices. I tried to include only
the most useful tips so you can start using them right away!

If you have any other questions or comments, please feel free to contact me anytime on Twitter:
@cessss_ and LinkedIn: Success

I'll try to respond as soon as possible! Thank you for reading .💙

https://www.freecodecamp.org/news/html-best-practices/

https://www.freecodecamp.org/news/html-best-practices/
https://www.linkedin.com/in/success-eriamiantoe/
http://www.twitter.com/cessss_
https://validator.w3.org/
https://validator.w3.org/

	30 HTML Best Practices for Beginners
	1. Always Close Your Tags
	Better

	2 Million+ WordPress Themes & Plugins, Web & Email Templates, UI Kits and More
	UX & UI Kits
	App Design Templates
	Android App Templates
	2. Declare the DOCTYPE
	3. Never Use Inline Styles
	Better

	4. Place All External CSS Files Within the Head Tag
	5. Consider Placing JavaScript Files at the Bottom
	Better

	6. Never Use Inline JavaScript. It's Not 1996!
	7. Validate Continuously
	8. Use Browser Developer Tools
	9. Keep Your Tag Names Lowercase
	Better

	10. Use H1 through H6 Tags
	11. If Building a Blog, Save the H1 for the Article Title
	12. Download ySlow
	13. Start Using New HTML5 Tags
	14. Wrap Navigation With an Unordered List
	Better

	15. Check Browser Support for Modern Features
	16. Choose a Great Code Editor
	17. Once the Website Is Complete, Compress!
	JavaScript Compression Services
	CSS Compression Services

	18. Cut, Cut, Cut
	19. All Images Require "Alt" Attributes
	Bad
	Better

	20. Stay Up Late
	21. View Source
	22. Style ALL Elements
	23. Use Twitter
	24. Learn Photoshop
	25. Learn Each HTML Tag
	26. Participate in the Community
	27. Use a CSS Reset
	28. Line 'em Up!
	29. Slice a PSD
	30. Don't Use a Framework... Yet

	HTML Best Practices – How to Build a Better HTML-Based Website
	HTML Best Practices
	Use only one <h1> element for one code sheet
	Do not skip heading levels in HTML
	Use the figure element to add captions to your images in HTML
	Do not use divs to create headers and footers – use semantic elements instead
	Avoid using and <i> to bold and italicize texts on a web page
	Don't place block-level element within inline elements

	Conclusion

